extension | φ:Q→Aut N | d | ρ | Label | ID |
(C32xC6).1(C2xC4) = Dic3xC32:C4 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C32xC6 | 48 | 8- | (C3^2xC6).1(C2xC4) | 432,567 |
(C32xC6).2(C2xC4) = D6:(C32:C4) | φ: C2xC4/C1 → C2xC4 ⊆ Aut C32xC6 | 24 | 8+ | (C3^2xC6).2(C2xC4) | 432,568 |
(C32xC6).3(C2xC4) = C33:(C4:C4) | φ: C2xC4/C1 → C2xC4 ⊆ Aut C32xC6 | 48 | 8- | (C3^2xC6).3(C2xC4) | 432,569 |
(C32xC6).4(C2xC4) = S3xC32:2C8 | φ: C2xC4/C1 → C2xC4 ⊆ Aut C32xC6 | 48 | 8- | (C3^2xC6).4(C2xC4) | 432,570 |
(C32xC6).5(C2xC4) = C33:5(C2xC8) | φ: C2xC4/C1 → C2xC4 ⊆ Aut C32xC6 | 24 | 8+ | (C3^2xC6).5(C2xC4) | 432,571 |
(C32xC6).6(C2xC4) = C33:M4(2) | φ: C2xC4/C1 → C2xC4 ⊆ Aut C32xC6 | 48 | 8- | (C3^2xC6).6(C2xC4) | 432,572 |
(C32xC6).7(C2xC4) = C33:2M4(2) | φ: C2xC4/C1 → C2xC4 ⊆ Aut C32xC6 | 24 | 8+ | (C3^2xC6).7(C2xC4) | 432,573 |
(C32xC6).8(C2xC4) = C3xC3:S3:3C8 | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).8(C2xC4) | 432,628 |
(C32xC6).9(C2xC4) = C3xC32:M4(2) | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).9(C2xC4) | 432,629 |
(C32xC6).10(C2xC4) = C12xC32:C4 | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).10(C2xC4) | 432,630 |
(C32xC6).11(C2xC4) = C3xC4:(C32:C4) | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).11(C2xC4) | 432,631 |
(C32xC6).12(C2xC4) = C6xC32:2C8 | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).12(C2xC4) | 432,632 |
(C32xC6).13(C2xC4) = C3xC62.C4 | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 24 | 4 | (C3^2xC6).13(C2xC4) | 432,633 |
(C32xC6).14(C2xC4) = C3xC62:C4 | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 24 | 4 | (C3^2xC6).14(C2xC4) | 432,634 |
(C32xC6).15(C2xC4) = C33:7(C2xC8) | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).15(C2xC4) | 432,635 |
(C32xC6).16(C2xC4) = C33:4M4(2) | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).16(C2xC4) | 432,636 |
(C32xC6).17(C2xC4) = C4xC33:C4 | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).17(C2xC4) | 432,637 |
(C32xC6).18(C2xC4) = C33:9(C4:C4) | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).18(C2xC4) | 432,638 |
(C32xC6).19(C2xC4) = C2xC33:4C8 | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).19(C2xC4) | 432,639 |
(C32xC6).20(C2xC4) = C33:12M4(2) | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 24 | 4 | (C3^2xC6).20(C2xC4) | 432,640 |
(C32xC6).21(C2xC4) = C62:11Dic3 | φ: C2xC4/C2 → C4 ⊆ Aut C32xC6 | 24 | 4 | (C3^2xC6).21(C2xC4) | 432,641 |
(C32xC6).22(C2xC4) = C3xS3xC3:C8 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).22(C2xC4) | 432,414 |
(C32xC6).23(C2xC4) = C3xC12.29D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).23(C2xC4) | 432,415 |
(C32xC6).24(C2xC4) = C3xD6.Dic3 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).24(C2xC4) | 432,416 |
(C32xC6).25(C2xC4) = C3xC12.31D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).25(C2xC4) | 432,417 |
(C32xC6).26(C2xC4) = C3xDic32 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).26(C2xC4) | 432,425 |
(C32xC6).27(C2xC4) = C3xD6:Dic3 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).27(C2xC4) | 432,426 |
(C32xC6).28(C2xC4) = C3xC6.D12 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).28(C2xC4) | 432,427 |
(C32xC6).29(C2xC4) = C3xDic3:Dic3 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).29(C2xC4) | 432,428 |
(C32xC6).30(C2xC4) = C3xC62.C22 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).30(C2xC4) | 432,429 |
(C32xC6).31(C2xC4) = S3xC32:4C8 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).31(C2xC4) | 432,430 |
(C32xC6).32(C2xC4) = C3:S3xC3:C8 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).32(C2xC4) | 432,431 |
(C32xC6).33(C2xC4) = C12.69S32 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 72 | | (C3^2xC6).33(C2xC4) | 432,432 |
(C32xC6).34(C2xC4) = C33:7M4(2) | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).34(C2xC4) | 432,433 |
(C32xC6).35(C2xC4) = C33:8M4(2) | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).35(C2xC4) | 432,434 |
(C32xC6).36(C2xC4) = C33:9M4(2) | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 72 | | (C3^2xC6).36(C2xC4) | 432,435 |
(C32xC6).37(C2xC4) = Dic3xC3:Dic3 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).37(C2xC4) | 432,448 |
(C32xC6).38(C2xC4) = C62.77D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).38(C2xC4) | 432,449 |
(C32xC6).39(C2xC4) = C62.78D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).39(C2xC4) | 432,450 |
(C32xC6).40(C2xC4) = C62.79D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 72 | | (C3^2xC6).40(C2xC4) | 432,451 |
(C32xC6).41(C2xC4) = C62.80D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).41(C2xC4) | 432,452 |
(C32xC6).42(C2xC4) = C62.81D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).42(C2xC4) | 432,453 |
(C32xC6).43(C2xC4) = C62.82D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).43(C2xC4) | 432,454 |
(C32xC6).44(C2xC4) = C12.93S32 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).44(C2xC4) | 432,455 |
(C32xC6).45(C2xC4) = C33:10M4(2) | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | 4 | (C3^2xC6).45(C2xC4) | 432,456 |
(C32xC6).46(C2xC4) = C33:6C42 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).46(C2xC4) | 432,460 |
(C32xC6).47(C2xC4) = C62.84D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).47(C2xC4) | 432,461 |
(C32xC6).48(C2xC4) = C62.85D6 | φ: C2xC4/C2 → C22 ⊆ Aut C32xC6 | 48 | | (C3^2xC6).48(C2xC4) | 432,462 |
(C32xC6).49(C2xC4) = S3xC3xC24 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).49(C2xC4) | 432,464 |
(C32xC6).50(C2xC4) = C32xC8:S3 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).50(C2xC4) | 432,465 |
(C32xC6).51(C2xC4) = Dic3xC3xC12 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).51(C2xC4) | 432,471 |
(C32xC6).52(C2xC4) = C32xDic3:C4 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).52(C2xC4) | 432,472 |
(C32xC6).53(C2xC4) = C32xD6:C4 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).53(C2xC4) | 432,474 |
(C32xC6).54(C2xC4) = C3:S3xC24 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).54(C2xC4) | 432,480 |
(C32xC6).55(C2xC4) = C3xC24:S3 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).55(C2xC4) | 432,481 |
(C32xC6).56(C2xC4) = C12xC3:Dic3 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).56(C2xC4) | 432,487 |
(C32xC6).57(C2xC4) = C3xC6.Dic6 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).57(C2xC4) | 432,488 |
(C32xC6).58(C2xC4) = C3xC6.11D12 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).58(C2xC4) | 432,490 |
(C32xC6).59(C2xC4) = C8xC33:C2 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 216 | | (C3^2xC6).59(C2xC4) | 432,496 |
(C32xC6).60(C2xC4) = C33:15M4(2) | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 216 | | (C3^2xC6).60(C2xC4) | 432,497 |
(C32xC6).61(C2xC4) = C4xC33:5C4 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 432 | | (C3^2xC6).61(C2xC4) | 432,503 |
(C32xC6).62(C2xC4) = C62.146D6 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 432 | | (C3^2xC6).62(C2xC4) | 432,504 |
(C32xC6).63(C2xC4) = C62.148D6 | φ: C2xC4/C4 → C2 ⊆ Aut C32xC6 | 216 | | (C3^2xC6).63(C2xC4) | 432,506 |
(C32xC6).64(C2xC4) = C3xC6xC3:C8 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).64(C2xC4) | 432,469 |
(C32xC6).65(C2xC4) = C32xC4.Dic3 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 72 | | (C3^2xC6).65(C2xC4) | 432,470 |
(C32xC6).66(C2xC4) = C32xC4:Dic3 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).66(C2xC4) | 432,473 |
(C32xC6).67(C2xC4) = C32xC6.D4 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 72 | | (C3^2xC6).67(C2xC4) | 432,479 |
(C32xC6).68(C2xC4) = C6xC32:4C8 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).68(C2xC4) | 432,485 |
(C32xC6).69(C2xC4) = C3xC12.58D6 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 72 | | (C3^2xC6).69(C2xC4) | 432,486 |
(C32xC6).70(C2xC4) = C3xC12:Dic3 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 144 | | (C3^2xC6).70(C2xC4) | 432,489 |
(C32xC6).71(C2xC4) = C3xC62:5C4 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 72 | | (C3^2xC6).71(C2xC4) | 432,495 |
(C32xC6).72(C2xC4) = C2xC33:7C8 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 432 | | (C3^2xC6).72(C2xC4) | 432,501 |
(C32xC6).73(C2xC4) = C33:18M4(2) | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 216 | | (C3^2xC6).73(C2xC4) | 432,502 |
(C32xC6).74(C2xC4) = C62.147D6 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 432 | | (C3^2xC6).74(C2xC4) | 432,505 |
(C32xC6).75(C2xC4) = C63.C2 | φ: C2xC4/C22 → C2 ⊆ Aut C32xC6 | 216 | | (C3^2xC6).75(C2xC4) | 432,511 |
(C32xC6).76(C2xC4) = C22:C4xC33 | central extension (φ=1) | 216 | | (C3^2xC6).76(C2xC4) | 432,513 |
(C32xC6).77(C2xC4) = C4:C4xC33 | central extension (φ=1) | 432 | | (C3^2xC6).77(C2xC4) | 432,514 |
(C32xC6).78(C2xC4) = M4(2)xC33 | central extension (φ=1) | 216 | | (C3^2xC6).78(C2xC4) | 432,516 |